

LEARNING MOTION IN FEATURE SPACE: LOCALLY-CONSISTENT DEFORMABLE CONVOLUTION NETWORKS FOR FINE-GRAINED ACTION DETECTION

MOTIVATION

Task: Predict segments of fine-grained action from a given video

- Fine-grained actions are difficult to visually distinguish based on individual frames
- Two-stream approaches are computationally expensive in general (optical flow + multi-stream inference)

Contributions:

- Modeling motion in feature space using changes in adaptive receptive fields over time
- Introducing local coherency constraint to enforce consistency in motion
- Constructing a backbone single-stream network to jointly learn spatio-temporal features

PROBLEM FORMULATION

Background:

- Standard convolution: $\mathbf{y}[n] = \sum_k \mathbf{w}[-k]\mathbf{x}[n+k]$
- Deformable convolution: for $\ddot{\Delta} \in \mathbb{R}^{N \times K}$. $\mathbf{y}[n] = \sum_{k} \mathbf{w}[-k] \mathbf{x} \left(n + k + \ddot{\Delta}_{n,k} \right), \quad \left(\ddot{\Delta}_{n,k} = (\mathbf{h}_{k} * \mathbf{x})[n] \right)$
- Adaptive receptive field at time t: $\ddot{\mathbf{F}}^{(t)} \in \mathbb{R}^{N \times K}$ where $\ddot{\mathbf{F}}_{n,k}^{(t)} = n + k + \ddot{\Delta}_{n,k}^{(t)}$

Temporal modeling: $\ddot{\mathbf{r}}^{(t)} = \ddot{\mathbf{F}}^{(t)} - \ddot{\mathbf{F}}^{(t-1)} = \ddot{\Delta}^{(t)} - \ddot{\Delta}^{(t-1)}$, $\ddot{\mathbf{r}}^{(t)} \neq 0$ only for deformable convolutions

No guarantee of local consistency in receptive fields:

- $\hat{\Delta}_{n,k}$ corresponds to $\mathbf{x}[n+k] = \mathbf{x}[m]$, where m = n+k.
- Multiple ways to decompose: m = (n l) + (k + l), for any l

Locally-consistent deformable convolution (LCDC):

$$\mathbf{y}[n] = \sum_{k} \mathbf{w}[-k] \mathbf{x} \left(n + k + \dot{\Delta}_{n+k} \right), \quad \text{where}$$

- Local coherency constraint: LCDC is a special case of deformable convolution where $\Delta_{n,k} = \Delta_{n+k}, \quad \forall n, k.$
- Appearance information: from the last layer.
- Motion information: from Δ of multiple layers in feature space

Khoi-Nguyen C. Mac¹ Dhiraj Joshi² Raymond A. Yeh¹ Jinjun Xiong² Rogerio S. Feris² Minh N. Do¹ ¹ University of Illinois at Urbana-Champaign ² IBM Research AI

OUR APPROACH

re $\dot{\Delta} \in \mathbb{R}^N$

RESULTS

	Model	Spatial comp	Temporal comp (short)	Long-temporal	F1@10	Edit	Acc
	SpatialCNN [16]	RGB	MHI	-	32.3	24.8	54.9
	(SpatialCNN) + ST-CNN [16]	RGB	MHI	1D-Conv	55.9	45.9	59.4
	(SpatialCNN) + DilatedTCN [15]	RGB	MHI	DilatedTCN	52.2	43.1	59.3
Mid	(SpatialCNN) + ED-TCN [15]	RGB	MHI	ED-TCN	68.0	59.8	64.7
	(SpatialCNN) + TDRN [17]	RGB	MHI	TDRN	(72.9)	(66.0)	(68.1)
	LCDC	RGB	Learned deformation	-	43.99	33.38	67.27
	LCDC + ST-CNN	RGB	Learned deformation	1D-Conv	60.01 ± 0.42	51.35 ± 0.12	68.45 ± 0.15
	LCDC + DilatedTCN	RGB	Learned deformation	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.54 ± 0.52	69.28 ± 0.25	
	LCDC + ED-TCN	RGB	Learned deformation	ED-TCN	73.75±0.54	66.94±1.33	$72.12{\pm}0.41$
	Spatial CNN [16]	RGB	MHI	-	35.0	25.5	68.0
	(SpatialCNN) + ST-CNN [16]	RGB	MHI	1D-Conv	61.7	52.8	71.3
	(SpatialCNN) + DilatedTCN [15]	RGB	MHI	DilatedTCN	55.8	46.9	71.1
al	(SpatialCNN) + ED-TCN [15]	RGB	MHI	ED-TCN	76.5	72.2	73.4
Ē	LCDC	RGB	Learned deformation	-	56.56	45.77	77.59
	LCDC + ST-CNN	RGB	Learned deformation	1D-Conv	$70.46 {\pm} 0.41$	62.71 ± 0.46	$77.84 {\pm} 0.26$
	LCDC + DilatedTCN	RGB	Learned deformation	DilatedTCN	$67.59 {\pm} 0.42$	$58.97 {\pm} 0.55$	78.29 ± 0.29
	LCDC + ED-TCN	RGB	Learned deformation	ED-TCN	$80.22{\pm}0.21$	$74.56{\pm}0.70$	78.90±0.25

Model	Spatial comp	Temporal comp (short)	Long-temporal	F1@10	Edit	Acc
SpatialCNN [16]	RGB	MHI	-	41.8	-	54.1
(SpatialCNN) + ST-CNN [16]	RGB	MHI	1D-Conv	58.7	-	60.6
(SpatialCNN) + DilatedTCN [15]	RGB	MHI	DilatedTCN	58.8	-	58.3
(SpatialCNN) + ED-TCN [15]	RGB	MHI	ED-TCN	72.2	-	64.0
(SpatialCNN) + TDRN [17]	RGB	MHI	TDRN	(79.2)	(74.1)	(70.1)
LCDC	RGB	Learned deformation	-	52.42	45.38	55.32
LCDC + ST-CNN	RGB	Learned deformation	1D-Conv	$62.23 {\pm} 0.69$	55.75 ± 0.94	$58.36 {\pm} 0.45$
LCDC + DilatedTCN	RGB	Learned deformation	DilatedTCN	$62.08 {\pm} 0.85$	$55.13 {\pm} 0.79$	$58.07 {\pm} 0.30$
LCDC + ED-TCN	RGB	Learned deformation	ED-TCN	75.39±1.33	$72.84{\pm}0.84$	65.34±0.54

Ablation Study: on split 1 of 50 Salads dataset

Model	Spatial comp	Temporal comp (short)	Fusion scheme	Acc	Total params	Deform param
SpatialCNN	RGB (single)	MHI (multi)	Stacked inputs	60.99	-	-
NaiveAppear	RGB (single)	_	-	68.45	38.9M	-
NaiveTempAppea	ar RGB (multi)	Avg feat frames (multi)	-	71.52	38.9M	-
OptFlowMotion	-	OptFlow (multi)	-	25.67	134.1M	-
TwoStreamNet	RGB (multi)	OptFlow (multi)	Avg scores	71.82	173.0M	-
DC	RGB (multi)	Learned deformation (w/o local coherency) (multi)	3D-Conv	72.25	45.7M	995.5K
LCDC	RGB (multi)	Learned deformation (multi)	3D-Conv	73.77	42.7M	27.7K

50 Salads dataset: 50 salad making videos, each 5-10 minutes. We report 2 granularity levels: *mid* (17 classes) and *eval* (9 classes)

GTEA dataset: 28 kitchen activity videos, each around 1 minute. On average, a video has 19 segments from 7 classes