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Introduction

Fine-grained Actions

Actions with high inter-class similarity [5, 6]

Difficult to distinguish two different actions just from observing
individual frames

Heavily rely on motion, rather than mostly on appearance cues

(a) cut cheese (b) cut lettuce (c) place cheese into
bowl

Figure 1: Examples of some fine-grained actions (frames) in 50 Salads dataset.
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Introduction

Fine-grained Action Detection Pipeline

(Fine-grained) Action detection: given a video of action sequence,
determine where an action segment starts/ends and categorize that
action

Step one: Spatio-temporal feature extraction (short-term)

Analyze a few consecutive frames
Traditional approaches: appearance stream (RGB) and motion stream
(optical flow, IDT, MHI, etc .)
Our focus

Step two: Long-temporal modeling

Models long-term dependency of the whole video
Using extracted short-term spatio-temporal features
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Introduction

Observation

Two-stream approaches are computationally expensive (optical flow
and multi-stream inference)

Motion extracted by optical flow in pixel space suffers from noise [3, 4]
Deformable convolution is flexible [1]

Adaptive receptive fields can focus on important regions in a frame →
Motivates tracking important motion
Traditional optical flow tracks all possible motion (some are not
necessary)

Figure 2: Adaptive receptive fields (red dots) of deformable convolutions w.r.t. activation units
(green dots) [1].
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Introduction

Proposed Approach

We propose: Locally-Consistent Deformable Convolution (LCDC)

Learn temporal information in the feature space

Exploit the property of adaptive receptive fields to extract motion of
important regions

Jointly model spatial and temporal components (single stream)
effectively and efficiently with local coherency constraint

As a byproduct, the framework produces rich spatio-temporal features
for long-temporal models
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Approach

More Observations

(a) frame at time t− 1. (b) frame at time t. (c) masks of the person.

(d) no motion vectors
found.

(e) motion vectors
found.

(f) visualization of
motion.

Figure 3: Visualization of difference of adaptive receptive fields for action cutting lettuce in 50
Salads dataset.
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Approach

Network Architecture - Overview
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Figure 4: Network architecture of our proposed framework across multiple frames.
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Approach

Deformable Convolutions

Standard convolutions

y[n] =
∑
k

w[−k]x [n + k] , (1)

Deformable convolutions

y[n] =
∑
k

w[−k]x
(
n + k + ∆̈n,k

)
, (2)

w ∈ RK : convolutional kernel

n ∈ ZN and k ∈ ZK : signal and kernel indices (multi-dimensional)

∆̈ ∈ RN×K : deformation offsets (∆̈n,k = (hk ∗ x)[n])

(·): index that requires interpolation (∆̈n,k is fractional)
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Approach

Modeling Motion with Adaptive Receptive Fields

Adaptive receptive field at time t

F̈(t) ∈ RN×K where F̈
(t)
n,k = n + k + ∆̈

(t)
n,k, (3)

Temporal modelling

r̈(t) = F̈(t) − F̈(t−1) = ∆̈(t) − ∆̈(t−1). (4)

r̈(t) 6= 0 only for deformable convolutions
Property: Given T input feature maps (spatial dimension H ×W ), we
can create

T different ∆̈(t)|T−1
t=0

T − 1 motion fields r̈(t)|T−2
t=0 with the same spatial dimension

Thus, we can model different motion at different positions n and time t.
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Approach

Illustration of Difference of Receptive Fields

Standard convolution Dilated convolution Deformable convolution

Receptive field 
at time t-1

Receptive field 
at time t

Difference of  
receptive 

fields 
through time 

Deformable convolution Consistent Deformable convolution 

Figure 5: Temporal information modeled by the difference of receptive fields at a single location.
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Approach

Consistency of r̈

No guarantee of local consistency in receptive fields

∆̈n,k corresponds to x[n + k] = x[m]
Multiple ways to decompose m, i.e. m = n + k = (n− l) + (k + l),
for any l
Therefore, one single x[m] is deformed by multiple ∆̈n−l,k+l, with
different l

Standard convolution Dilated convolution Deformable convolution

Receptive field 
at time t-1

Receptive field 
at time t

Difference of  
receptive 

fields 
through time 

Deformable convolution Locally-consistent deformable convolution 

Figure 6: Illustration of receptive fields at two consecutive locations (faded and solid red
squares) in 2D at time t, with and without local coherency constraint.
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Approach

Locally-Consistent Deformable Convolution

Locally-consistent deformable convolution (LCDC):

y[n] =
∑
k

w[−k]x
(
n + k + ∆̇n+k

)
. (5)

for ∆̇ ∈ RN . LCDC is a special case of deformable convolution where

∆̈n,k = ∆̇n+k, ∀n, k. (6)

We name this condition as local coherency constraint.
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Approach

Interpretation of LCDC

Instead of deforming the receptive field as in Eq. (2), we can deform the
input signal

y[n] =
∑
k

w[−k]x̃[n + k] = (x̃ ∗w)[n], (7)

where
x̃[n] = (D∆̇{x})[n] = x

(
n + ∆̇n

)
(8)

is a deformed version of x and D∆̇{·} is defined as the deforming

operation by offset ∆̇
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Approach

How to Produce ∆̇?

Recall that ∆̈ ∈ RN×K is learned via a convolution layer, i.e.

∆̈n,k = (hk ∗ x)[n] (9)

Similarly, ∆̇ ∈ RN can also be learned via a convolution layer, i.e.

∆̇n = (Φ ∗ x)[n] (10)

Property of ∆̈ is carried over, i.e. ∆̇ can also model motion at different
positions n and times t
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Approach

Efficiency of LCDC

∆̇ ∈ RN only needs a kernel Φ, while ∆̈ ∈ RN×K requires K hk|K−1
k=0

Implementation-wise, given input feature map x ∈ RH×W×C

∆̈ ∈ R(H×W )×(G×Kh×Kw×2)

∆̇ ∈ RH×W×2

H and W : height and width of inputs
G: number of deformable groups
Kh and Kw: height and width of kernels
2: offsets are 2D vectors

The reduction is G×Kh ×Kw; proportional to the number of
deformable convolution layers
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Approach

Effectiveness of LCDC

LCDC can effectively model both appearance and motion information in a
single-stream network

Spatial information: y = (D∆̇{x}) ∗w
Temporal information: ṙ(t) = ∆̇(t) − ∆̇(t−1) has a behavior equivalent
to motion information produced by optical flow.
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Approach

Proposition

Suppose that two inputs x(t−1) and x(t) are related through a motion
field, i.e.

x(t)(s) = x(t−1) (s− o(s)) , (11)

where o(s) is the motion at location s ∈ R2, and x(t) is assumed to be
locally varying. Then the corresponding LCDC outputs with w 6= 0:

y(t) = (D∆̇(t){x(t)}) ∗w,

y(t−1) = (D∆̇(t−1){x(t−1)}) ∗w

are consistent, i.e. y(t−1) = y(t), if and ony if ∀n,

ṙ(t)
n = ∆̇(t)

n − ∆̇(t−1)
n = o

(
n + ∆̇(t)

n

)
. (12)

Notice that in pixel space, x are input images and o(s) is the optical flow
at s. In latent space, x are intermediate feature maps and o(s) is the
motion of feature.
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Approach

Proof.

With the connection of LCDC to standard convolution, under the assumption that
w 6= 0, we have:

y(t) = y(t−1)

⇔ D∆̇(t){x(t)} = D∆̇(t−1){x(t−1)}

⇔ x(t)
(
n + ∆̇(t)

n

)
= x(t−1)

(
n + ∆̇(t−1)

n

)
, ∀n.

Substituting the LHS in the motion relation in Eq. (11), we obtain the following
equivalent conditions ∀n:

x(t−1)
(
n + ∆̇(t)

n − o(n + ∆̇(t)
n )

)
= x(t−1)

(
n + ∆̇(t−1)

n

)
⇔ ∆̇(t)

n − o(n + ∆̇(t)
n ) = ∆̇(t−1)

n

⇔ o
(
n + ∆̇(t)

n

)
= ∆̇(t)

n − ∆̇(t−1)
n = ṙ(t)

n .

(since x(t) is locally varying).
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Approach

Spatio-temporal Features
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Figure 7: A more detailed view of our network architecture with the fusion module.
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Experimental Results
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Experimental Results

Datasets

50 Salads Dataset [7]: 50 salad making videos (5-10 minutes) with
different granularity levels: mid (17 action classes) and eval level (9
action classes)

Georgia Tech Egocentric Activities (GTEA) [2]: 28 videos (1
minute long) of 7 action classes. The camera in this dataset is
head-mounted.
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Experimental Results

Baselines

SpatialCNN [4]:

VGG-like model; learns both spatial and short-term temporal
information
Spatial components: a RGB frame
Temporal components: corresponding MHI (the difference between
frames over a short period of time)

ST-CNN [4], DilatedTCN [3], and ED-TCN [3]:

Long-temporal modeling frameworks
ST-CNN: uses a single 1D convolution
DilatedTCN: stacked dilated convolutions
ED-TCN: encoder (pooling) and decoder (upsampling by repetition)
framework
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Experimental Results

Metrics

Frame-wise accuracy: evaluates whether a frame is correctly
classified or not. Does not consider the temporal structure of the
output.

Segmental edit score: takes into account this problem by penalizing
over-segmentation. It evaluates the ordering of actions without
following specific timings.

F1@k score[3]: also penalizes over-segmentation but ignores small
time-shifting between the prediction and ground-truth.
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Experimental Results

Table 1: Results on 50 salads dataset (mid and eval-level).
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Experimental Results

Table 2: Results on GTEA dataset.
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Experimental Results

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

65.0

77.2

88.8

90.2

95.0

Acc

50 salads

Figure 8: Comparison of segmentation results across different methods on a test video from 50
Salads dataset (mid-level).
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Experimental Results

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

67.3

69.3

70.9

71.9

81.1

Acc

GTEA

Figure 9: Comparison of segmentation results across different methods on a test video from
GTEA dataset.
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Experimental Results

Ablation Study

SpatialCNN: The features from [4], inputs are stacked RGB frame
and MHI.

NaiveAppear: Frame-wise class prediction using ResNet50 (no
temporal information involved in this setup).

NaiveTempAppear: Appearance stream with multiple input frames
and ResNet50 backbone.

OptFlowMotion: Motion stream that models temporal component
using VGG-16.

TwoStreamNet: The two-stream framework obtained by averaging
scores from NaiveTempAppear and OptFlowMotion.

DC: Deformable convolution network (ResNet50) (without local
coherency constraint).

LCDC: Our proposed approach.
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Experimental Results

Figure 10: Ablation study on 50 Salads dataset (Split 1, mid-level). “Single” and “multi”
indicate the amount of input frames for spatial/temporal components.

Mac et al . LCDC 32 / 38



Conclusion

Conclusion
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Conclusion

We propose to model motion in feature space

To do so effectively, we introduce Locally-Consistent
Deformable Convolution
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