
Supplementary Material for Learning Motion in Feature Space:
Locally-Consistent Deformable Convolution Networks for Fine-Grained Action

Detection

A. Full formulation for convolutions with multiple output channels
Suppose that the input x of a convolution has I channels and the output has O channels, i.e. x ∈ RN×I ,y ∈ RM×O, we

can write the standard convolution as:
yj [n] =

�

i

�

k

wj,i[−k]xi [n+ k] , (11)

where i ∈ {1, . . . , I}, j ∈ {1, . . . , O}, and w ∈ RN×K×I×O. The original deformable convolution, therefore, is written as:

yj [n] =
�

i

�

k

wj,i[−k]xi

�
n+ k + Δ̈n,k

�
, (12)

In reality, there are multiple deformable groups (G > 1), meaning that different input channels can have different deformation
offsets. Specifically, a multi-channel deformable convolution with multiple deformable group can be written as:

yj [n] =
�

i

�

k

wj,i[−k]xi

�
n+ k + Δ̈gi,n,k

�
, (13)

where gi is the deformable group that the input channel i belongs to. We keep the deformable group as G = 1 and drop the
notation gi for the sake of simplicity.

We write the multi-channel LCDC as:

yj [n] =
�

i

�

k

wj,i[−k]xi

�
n+ k + Δ̇n+k

�
. (14)

It is equivalent to
yj [n] =

�

i

�

k

wj,i[−k]x̃i[n+ k] = (x̃ ∗wj)[n], (15)

where
x̃i[n] = (DΔ̇{xi})[n] = xi

�
n+ Δ̇n

�
. (16)

B. More reasoning on the difference of receptive fields
r̈(t) and ṙ(t) of deformable convolution and locally-consistent deformable convolution carries temporal information be-

cause the offsets are constructed from inputs at different time frames. This property is not valid in other types of convolutions.
We can write standard convolutions and dilated convolutions as special cases of deformable convolutions, i.e. Δ̈ = 0 in stan-
dard convolution and Δ̈(t) = const, ∀t. Hence,

• Standard convolution:
Δ̈(t) = 0, ∀t ⇒ r̈(t) = 0, ∀t,

• Dilated convolution:
Δ̈(t) = Δ̈(t−1), ∀t ⇒ r̈(t) = 0, ∀t.

• Deformable convolution:
Δ̈(t) �= Δ̈(t−1) ⇒ r̈(t) �= 0.

• Locally-consistent deformable convolution:

Δ̇(t) �= Δ̇(t−1) ⇒ ṙ(t) �= 0.

C. In-detail architecture of LCDC
Tab. 4 shows the detailed architecture implementation of LCDC.

Layer Input(s) Output size Kernel size Comments

conv1 data (112,112,64) (7,7,64), stride2 with 3,3 maxpool, stride2
frames of all snippets
are unrolled

conv2x bn conv1 (56,56,256)



1, 1, 64
3, 3, 64
1, 1, 256


× 3 input is output of conv1

conv3x res2c relu (28,28,512)



1, 1, 128
3, 3, 128
1, 1, 512


× 4 input is output of conv2x

conv4x res3d relu (14,14,1024)



1, 1, 256
3, 3, 256
1, 1, 1024


× 6 input is output of conv3x

res5a branch1 res4f relu (14,14,2048) (1,1,2048) input is output of conv4x
bn5a branch1 (prev) (14,14,2048) - batch normalization
res5a branch2a (prev) (14,14,512) (1,1,512) convolution
bn5a branch2a (prev) (14,14,512) - batch normalization
res5a branch2a relu (prev) (14,14,512) - ReLU
res5a branch2b offset (prev) (14,14,2) (3,3,2) offset learner
res5a branch2b offset expand (prev) (14,14,18) - expand by replication
res5a branch2b res5a branch2a relu (14,14,512) (3,3,512) deformable convolution

res5a branch2b offset expand
bn5a branch2b (prev) (14,14,512) - batch normalization
res5a branch2b relu (prev) (14,14,512) - ReLU
res5a branch2c (prev) (14,14,2048) (1,1,2048) convolution
bn5a branch2c (prev) (14,14,2048) - batch normalization
res5a bn5a branch1 (14,14,2048) - addition

bn5a branch2c
res5a relu (prev) (14,14,2048) - ReLU
res5b branch2a (prev) (14,14,512) (1,1,512) convolution
bn5b branch2a (prev) (14,14,512) - batch normalization
res5b branch2a relu (prev) (14,14,512) - ReLU
res5b branch2b offset (prev) (14,14,2) (3,3,2) offset learner
res5b branch2b offset expand (prev) (14,14,18) - expand by replication
res5b branch2b res5b branch2a relu (14,14,512) (3,3,512) deformable convolution

res5b branch2b offset expand
bn5b branch2b (prev) (14,14,512) - batch normalization
res5b branch2b relu (prev) (14,14,512) - ReLU
res5b branch2c (prev) (14,14,2048) (1,1,2048) convolution
bn5b branch2c (prev) (14,14,2048) - batch normalization
res5b res5a relu (14,14,2048) - addition

bn5b branch2c
res5b relu (prev) (14,14,2048) - ReLU
res5c branch2a (prev) (14,14,512) (1,1,512) convolution
bn5c branch2a (prev) (14,14,512) - batch normalization
res5c branch2a relu (prev) (14,14,512) - ReLU
res5c branch2b offset (prev) (14,14,2) (3,3,2) offset learner
res5c branch2b offset expand (prev) (14,14,18) - expand by replication
res5c branch2b res5c branch2a relu (14,14,512) (3,3,512) deformable convolution

res5c branch2b offset expand
bn5c branch2b (prev) (14,14,512) - batch normalization
res5c branch2b relu (prev) (14,14,512) - ReLU
res5c branch2c (prev) (14,14,2048) (1,1,2048) convolution
bn5c branch2c (prev) (14,14,2048) - batch normalization
res5c res5b relu (14,14,2048) - addition

bn5c branch2c
res5c relu (prev) (14,14,2048) - ReLU
conv new 1 (prev) (14,14,256) (1,1,256) convolution
conv new 1 relu (prev) (14,14,256) - ReLU
spacetime fusion conv new 1 relu (L-1,14,14,262) - reshape all frames back into

res5a branch2b offset snippets, then concatenate
res5b branch2b offset difference of all offset layers
res5c branch2b offset with conv new 1 relu

spacetime conv1 (prev) (L-1,14,14,256) (4,3,3,256) 3Dconv with window size
for temporal dimension of 4

spacetime bn1 (prev) (L-1,14,14,256) - batch normalization
spacetime relu1 (prev) - ReLU

spacetime pool1 (prev) ((L-1)/2,14,14,256) - temporal max pooling of size 2
spacetime conv2 (prev) ((L-1)/2,14,14,256) (4,3,3,256) 3Dconv with window size

for temporal dimension of 4
spacetime bn2 (prev) ((L-1)/2,14,14,256) - batch normalization
spacetime relu2 (prev) - ReLU
spacetime pool2 (prev) ((L-1)/4,14,14,256) - temporal max pooling of size 2
spacetime reduce (prev) (14,14,256) - averaging across time domain
pool new (prev) (7,7,256) - max pooling, stride 2
fc new 1 (prev) (1024) - fully connected with ReLU
fc new 2 (prev) (1024) - fully connected with ReLU

Table 4: LCDC architecture in detail. The groups conv1, conv2x, conv3x, and conv4x are the same as the original ResNet50.
The convention of kernel size: (kernel height, kernel width, number of output channels) for 2D convolution and (ker-
nel time, kernel height, kernel width, number of output channels) for 3D convolution. Size of input data is (224, 224,
3). L is the number of frames per video snippet (we choose L = 16). If the input is annotated as (prev), it means it uses the
output from the previous layer.

D. In-detail figures
We provide higher-resolution versions of Fig. 2, Fig. 4, and Fig. 3 in Fig. 6, Fig. 7, and Fig. 8 respectively. Fig. 9

and Fig. 10 also show higher-resolution versions of Fig. 5 with annotation of color-code. We also provide the groundtruth
action sequence of the two videos. Readers can view the videos corresponding to Fig. 9 and Fig. 10 in other additional
supplementary materials (50salads.mp4 and gtea.mp4).

v
(0)

v
(t)

v
(T−1)

Motion
information

Spatio-
temporal
feature

Δ

. (0)

l

Δ

. (0)

l+1

Δ

. (0)

l+2

x
(0)

l+1

x
(0)

l+2

Δ

. (t)

l

Δ

. (t)

l+1

Δ

. (t)

l+2

x
(t)

l

x
(t)

l+1

x
(t)

l+2

x
(0)

l Δ

. (T−1)

l

Δ

. (T−1)

l+1

Δ

. (T−1)

l+2

x
(T−1)

l

x
(T−1)

l+1

x
(T−1)

l+2

x
(0)

l+3
x
(t)

l+3
x
(T−1)

l+3

Appearance
information

Figure 6: Network architecture of our proposed framework across multiple frames v(t). Appearance information comes
from the last layer while motion information is extracted directly from deformation Δ̇ in the feature space instead of from a
separate optical flow stream. Weights are shared across frames over time.

x
(t−1)

L

y
(t−1)

L

ΦL

WL

x
(t)

L

Δ

. (t)

L

y
(t)

L

ΦL

WL

Loss

Motion
information

Concat

conv3D conv3D
fc fc

Fusion

Δ

. (t)

L−1

Δ

. (t−1)

L−1 Δ

. (t−1)

L

Long-temporal
modelling

spatio-temporal
features

Appearance
information Addition operation

Convolution operation

r
. (t)

L−1

r
. (t)

L

Subtraction operation

Figure 7: A more detailed view of our network architecture with the fusion module. Appearance information comes from
output of the last layer while motion information comes from aggregating ṙ from multiple layers. Outputs of the final fc layer
can be flexibly used as the features for any long-temporal modeling networks.

Standard convolution Dilated convolution Deformable convolution

Receptive field
at time t-1

Receptive field
at time t

Difference of
receptive
fields

through time

Figure 8: Illustration of temporal information modeled by the difference of receptive fields at a single location in 2D. Only
deformable convolution can capture temporal information (shown with red arrows). Related to Eq. (2) and Eq. (3), n is red
square, n+ k are green dots, Δ̈n,k are black arrows, n+ k + Δ̈n,k are blue dots, and r̈ are red arrows.

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

65.0

77.2

88.8

90.2

95.0

Acc

50 salads

Figure 9: Comparison of segmentation results across different methods on a test video from 50 Sal-
ads dataset (mid-level). The action sequence is: add oil, background, add vinegar, add salt, add pepper,
mix dressing, background, cut tomato, place tomato into bowl, cut lettuce, background, place lettuce into bowl,
cut cheese, place cheese into bowl, peel cucumber, background, cut cucumber, place cucumber into bowl, mix ingredients,
serve salad onto plate, add dressing.

SVM

ST-CNN

Dilated-TCN

ED-TCN

LCDC+
ED-TCN

Groundtruth

67.3

69.3

70.9

71.9

81.1

Acc

GTEA

Figure 10: Comparison of segmentation results across different methods on a test video from GTEA dataset. The action
sequence is: take, background, take, background, open, background, scoop, pour, scoop, pour, background, close, put,
background, take, open, background, pour, background, close, put, background, take, open, background, pour, background,
close, put, background, stir.

