

Large-Scale Mixed-Bandwidth Deep Neural Network Acoustic Modeling for ASR

Khoi-Nguyen C. Mac*, Xiaodong Cui, Wei Zhang and Michael Picheny

*Department of ECE, UIUC, USA IBM Research AI, IBM T. J. Watson Research Center, USA

09/16/2019

Outline

- Experimental investigation of mixed-band (MB) acoustic modeling
- Strategies for MB acoustic modeling
 - Downsampling
 - Upsampling
 - Bandwidth extension (BWE)
 - Investigate a discriminatively trained BWE scheme
- Experimental results
 - Large-scale training data with unbalanced amounts of WB (1,150h) and NB (2,300h) speech
 - Diverse test sets from a variety of real-world application domains
- Summary and future work

Why Mixed-Band Acoustic Modeling Is Appealing

- Both WB and NB speech signals widely exist in speech applications
 - WB: broadcast news
 - NB: telephony speech
- WB and NB acoustic models are usually separately trained for ASR
- One acoustic model for both WB and NB would be great for real-world system deployment

How To Carry Out Mixed-Band Acoustic Modeling

- The goal of MB acoustic modeling is to converge WB and NB speech to one bandwidth
- Common strategies
 - Downsampling
 - Upsampling
 - BWE
- Interested in seeking answers to the following questions:
 - 1. Which strategy is better, upsampling or downsampling?
 - 2. How would direct pooling perform under DNNs?
 - 3. How would BWE help in this case?

Downsampling and Upsampling

- Classical multirate signal processing
- Typically carried out in the time domain

Bandwidth Extension for ASR (1)

- Estimates missing high frequency spectral components
- Has been extensively studied in communication and acoustic processing for a long time.
- Usually aims to improve intelligibility and quality of perception

Bandwidth Extension for ASR (2)

Problem Formulation:

- $\mathbf{X} = \{ oldsymbol{x}_1, \cdots, oldsymbol{x}_n \}$ denotes a sequence of n NB features
- $\hat{\mathbf{Y}} = \{\hat{y}_1, \cdots, \hat{y}_n\}$ denotes a sequence of n WB features
- Establish a mapping $f_{ heta}$ with parameter heta: $\hat{\mathbf{Y}} = f_{ heta}(\mathbf{X})$

Common approaches:

• Treated as a regression problem (parallel data required)

$$\theta^* = \operatorname*{argmin}_{\theta} \frac{1}{n} \sum_{i=1}^n \| \boldsymbol{y}_i - f_{\theta}(\boldsymbol{x}_i) \|_2^2$$

- Treated as a generative problem
 - e.g. generative adversarial nets (GANs)

Caveat: They may not be well aligned with the ASR performance

A Discriminatively Trained BWE

- Discriminatively trained BWE $\theta^* = \operatorname{argmin}_{\theta} \frac{1}{n} \sum_{i,k} l_{ik} \log \frac{1}{n_{ik}}$
- Fixed WB acoustic model
- Labels generated by aligning upsampled NB speech against WB acoustic model
- Optimization of BWE more related to ASR performance

Training Data

- 1,150 hours WB speech
 - 420h broadcast news data
 - 450h internal dictation data
 - 100h meeting data
 - 140h hospitality (travel and hotel reservation) data
 - 40h accented data
- 2,300 hours NB speech
 - 2,000h Switchboard
 - 300h IBM call-center data

Test Data and Decoding

- 4 WB test sets and 4 NB test sets
- 4-gram LM consisting of 200M n-grams, trained on a broad variety of sources
- 250K decoding vocabulary

		Description	Hours
	WS1	Dev04f test set from Broadcast News	2.21
	WS2	Commercial services help desk	0.34
WB	WS3	Hospitality domain 1	1.21
	WS4	Hospitality domain 2	0.81
	NS1	Hub5-2000 test set from Switchboard	2.10
NB	NS2	Technical support	4.09
	NS3	Commercial services help desk	3.01
	NS4	Multi-domain command and control	12.78

System Implementation

- Models
 - CNN acoustic models for WB, NB and MB
 - VGG-like CNN models for BWE
- Feature Space
 - 16KHz for WB, 8KHz for NB
 - Upsampling and downsampling carried out in time domain
 - ▶ 40-dim logmel, Δ , Δ^2 , temporal context of 11 frames
 - Global CMN followed by utterance-based CMN
- Distributed Training
 - Synchronous data parallel training on 8 Nvidia v100 GPUs
 - Allreduce based on NCCL

CNN Acoustic Models

- CNN models for both WB and NB speech
- 2 conv layers, each followed by a max-pooling layer
- kernel $5\!\times\!5$, stride $1\!\times\!1$ and padding $2\!\times\!2$ for conv layers
- kernel 2×2 and stride 2×2 for max-pooling layers
- Relu activation except sigmoid for the last FC layer
- two capacities with (128,256) and (256,512) feature maps respectively

CNN BWE Models

- VGG-like architecture
- 4 conv layers and a max-pooling layer after every 2 conv layers
- kernel $3\!\times\!3$, stride $1\!\times\!1$ and padding $1\!\times\!1$ for conv layers
- kernel 2×2 and stride 2×2 for max-pooling layers
- Relu activation except tanh for the last FC layer
- two capacities with (64,128) and (128,256) feature maps respectively

A Discriminatively Trained BWE

Experiments – An Overview

- (1) WB and NB baselines
- (2) Direct pooling of WB and upsampled NB
- (3) BWE decoded against WB model
- (4) Pooling of WB and NB after BWE
- (5) Fine-tuning by alternated optimization of BWE and MB models

	WB						NB					
	WS1	WS2	WS3	WS4	Avg	NS1	NS2	NS3	NS4	Avg		
WB baseline ([128,256])	15.4	14.9	9.1	29.2	17.2	<u>25.1</u>	<u>39.0</u>	<u>13.7</u>	<u>22.0</u>	<u>25.0</u>		
NB baseline ([128,256])	<u>21.3</u>	<u>16.8</u>	<u>15.6</u>	<u>40.5</u>	<u>23.6</u>	13.5	25.0	12.8	19.7	17.8		
WB+NB↑,[128,256])	17.1	13.0	12.2	27.9	17.6	13.8	25.5	12.2	19.6	17.8		
WB+NB↑,[256,512])	16.5	12.8	11.8	28.8	17.5	13.4	25.2	11.8	19.2	17.4		
WB↓+NB,[128,256])	18.9	17.2	13.3	35.9	21.3	14.0	26.2	12.5	19.1	18.0		

Performance of Direct Pooling

- Sampling rate mismatch gives rise to significant degradation
- Direct pooling helps
- Increasing model capacity helps
- Upsampling performs better than downsampling under pooling

Performance of BWE

	WB	NB
WB baseline ([128,256])	17.2	<u>25.0</u>
NB baseline ([128,256])	<u>23.6</u>	17.8
BWE ([64,128])	-	18.9
BWE ([128,256])	-	18.6
nBWE ([64,128])	-	18.7

- BWE can significantly improve upsampled NB speech against WB acoustic model
- Increasing model capacity of BWE helps
- Improvement is consistent across test sets
- Denoising BWE helps

Performance of Pooling with BWE

			WB		NB					
	WS1	WS2	WS3	WS4	Avg	NS1	NS2	NS3	NS4	Avg
WB+NB [†] ,[128,256]	17.1	13.0	12.2	27.9	17.6	13.8	25.5	12.2	19.6	17.8
WB+NB [†] ,[256,512]	16.5	12.8	11.8	28.8	17.5	13.4	25.2	11.8	19.2	17.4
WB↓+NB,[128,256]	18.9	17.2	13.3	35.9	21.3	14.0	26.2	12.5	19.1	18.0
WB+NB ⁺ BWE, [128,256]	16.5	14.2	10.1	29.9	17.7	13.6	25.6	12.2	19.7	17.8
WB+NB ⁺ BWE, [256,512]	16.0	14.6	9.7	29.9	17.6	13.7	25.4	12.2	19.6	17.7
WB+NB ⁺ nBWE, [128,256]	16.4	14.3	10.0	30.9	17.9	13.7	25.6	12.1	19.5	17.7

- BWE model sticks to model capacity of [64,128]
- Improves from BWE alone
- Slightly better than direct pooling under the same model capacity
- No improvements from direct pooling with large capacity

Performance of Fine-tuning of Pooling with BWE

	WB	WB
WB+NB↑+BWE, [128,256]	17.7	17.8
WB+NB ⁺ BWE, [256,512]	17.6	17.7
WB+NB ⁺ nBWE, [128,256]	17.9	17.7
WB+NB ⁺ BWE+FT, [128,256]	17.6	17.9
WB+NB ⁺ BWE+FT, [256,512]	17.6	17.8
WB+NB ⁺ nBWE+FT, [128,256]	17.7	17.7

- BWE CNN is connected to the (fixed) MB CNN
- Finetune with a smaller learning rate
- Training another MB CNN
- No consistent improvement.

Summary and Future Work

- It is possible to train a MB model of competitive performance
 - Upsampling appears to be more helpful than downsampling
- Direct pooling WB and upsampled NB with appropriately increased model capacity gives good performance
 - the MB model yields lower average WERs over NB baseline with only slight degradation over WB baseline
- BWE helps upsampled NB data against WB model
 - Pilot experiments show that discriminatively trained BWE outperforms MMSE-based BWE
- No strong observation that pooling WB and NB with BWE is better than direct pooling under increased model capacity
 - No consistent gains across a broad variety of test sets
 - Although direct pooling assumes no explicit BWE, DNNs with sufficient capacity may implicitly learn the mapping during training
- Looking forward
 - More powerful deep generative model with discriminative training

Complete Experimental Results

	WB						NB				
	WS1	WS2	WS3	WS4	Avg	NS1	NS2	NS3	NS4	Avg	
WB baseline ([128,256])	15.4	14.9	9.1	29.2	17.2	25.1	<u>39.0</u>	<u>13.7</u>	22.0	25.0	
NB baseline ([128,256])	<u>21.3</u>	<u>16.8</u>	<u>15.6</u>	<u>40.5</u>	<u>23.6</u>	13.5	25.0	12.8	19.7	17.8	
DirectMix (WB+NB ⁺ ,[128,256])	17.1	13.0	12.2	27.9	17.6	13.8	25.5	12.2	19.6	17.8	
DirectMix (WB+NB↑,[256,512])	16.5	12.8	11.8	28.8	17.5	13.4	25.2	11.8	19.2	17.4	
DirectMix (WB↓+NB,[128,256])	18.9	17.2	13.3	35.9	21.3	14.0	26.2	12.5	19.1	18.0	
BWE ([64,128])	-	-	-	-	-	15.2	27.8	12.4	20.2	18.9	
BWE ([128,256])	-	-	-	-	-	14.9	27.4	12.2	20.0	18.6	
nBWE ([64,128])	-	-	-	-	-	15.0	27.6	12.4	19.6	18.7	
Mix (WB+NB++BWE, [128,256])	16.5	14.2	10.1	29.9	17.7	13.6	25.6	12.2	19.7	17.8	
Mix (WB+NB ⁺ BWE, [256,512])	16.0	14.6	9.7	29.9	17.6	13.7	25.4	12.2	19.6	17.7	
Mix (WB+NB ⁺ nBWE, [128,256])	16.4	14.3	10.0	30.9	17.9	13.7	25.6	12.1	19.5	17.7	
MixFT (WB+NB↑+BWE, [128,256])	16.6	14.8	9.9	29.2	17.6	13.6	25.6	12.5	19.7	17.9	
MixFT (WB+NB ⁺ BWE, [256,512])	16.1	15.1	9.7	29.3	17.6	13.7	25.5	12.4	19.6	17.8	
MixFT (WB+NB↑+nBWE, [128,256])	16.2	14.4	9.8	30.3	17.7	13.6	25.4	12.0	19.6	17.7	